
Stochastic resonance in single-domain particles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 4137

(http://iopscience.iop.org/0953-8984/6/22/013)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 12/05/2010 at 18:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/22
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter 6 (1994) 41374145. Printed in the UK 

Stochastic resonance in single-domain particles 

Yuri L Raikher and Victor I Stepanov 
Institute of Continuous Media Mechanics, Urals Branch of the Russian Academy, of Sciences, 
Perm, 614061, Russia 

Received iS F e b w  1994 

Abstract. A simple approximate equation of motion for the longiiudinal component of the 
magnetic moment of a single-domain uniaxial supelparamagnetic particle is proposed. This 
equation is used to evaluate the spectral density function of the interpanicle magnetic motion at 
finite temperatures and to describe the stochastic resonance effect. The correspondence of the 
results obtained with those of previous calculations is discussed. 

1. Introduction 

The phenomenon of stochastic resonance (SR) predicted not long ago [l] in the noise-driven 
behaviour of multi-stable systems, has since attracted a considerable attention [2-51. As is 
always the case with effects related to Brownian motion, SR has a wide range of applicability 
spreading from geometeorology [I] to laser physics [2]. 

The manifestation of SR is rather simple. To a bistable system, subjected to noise, a 
weak alternating field (modulation) of a frequency C2 favouring the traniitions between the 
equilibria is applied. Under these conditions the signal-to-noise ratio, determined from the 
spectral density function Q(o) at OJ = .S2 as a function of temperature, passes through a 
distinctive maximum. One of the peculiar features of SR is that its existence does not depend 
upon the actual type of dynamic equation as long as modulation is additive. In other words, 
SR is not sensitive to whether the character of motion is oscillatory or relaxational. 

In recent papers [6,7] the SR theory was applied to a very clear physical situation: a 
uniaxially anisotropic single-domain ferromagnetic particle. In the absence of interaction 
with the neighbours its magneticenergy is 

U = - p H ( e h ) -  K V ( e n ) *  (1) 

where e, n and h are the unit vectors of the particle magnetic moment, the hisotropy 
axis and the external field, respectively; K is the effective anisotropy constani (foruniaxial 
anisotropy it is essentially positive), p = I,V is the magnetic moment of a singledomain 
particle, I ,  is its magnetization and V its'volume. As it apparent from (I), without external 
fields the component of the magnetic moment p ( e n )  along the anisotropy axis has two, 
perfectly equal in energy, equilibrium orientations, viz., e 11 n and e II -n, thus making 
a one-dimensional bistable system. The rate of transition between those potential wells is 
controlled by the parameter [SI 

which, assuming that the barrier height K V is fixed, one may regard as the dimensionless 
inverse temperature. 
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In the present paper we revise and extend the results of [6,7]. Namely, hereby we 

-propose a simple equation of motion for the longitudinal component of the magnetic 
moment of a superparamagnetic particle, where the relaxation time is a function of the 
potential barrier, 

-demonstrate that in a wide temperature range this relaxation time with high accuracy 
coincides with that of the lowest mode of the pertinent Fokker-Planck equation, 

-evaluate SR using the adopted equation for the longitudinal relaxation, and compare 
the resulting curve with those based on recently proposed simple approximate expressions 
for the superparamagnetic relaxation time, 

-show that the description derived from the kinetic equation approach enables one to 
evaluate SR eliminating the quasi-static and high-barrier approximations on which previous 
calculations were essentially based and 

-explain that the method of two alternating fields proposed in [6,7] may not be used 
for direct observation of SR. 

2. Equation of motion for the longitudinal component of the magnetic moment 

The linear magnetodynamics of a single-domain superparamagnetic particle was studied 
in [9,10], where a Fokker-Planck-like rotary diffusion equation for the orientational 
distribution function W ( e ,  t )  of the unit vector e = K j p  of the magnetic moment was 
derived. Though the initial Langevin equations of the problem were slightly different- 
based on the Gilbert equation in [9] and on the Landau-Lifshitz one in [IO]-with the 
accuracy of notations the results concerning the longitudinal component of e coincide. At 
U f 0 (anisotropic particle) the free motion of the observable, i.e., averaged over the 
statistical ensemble, magnetic moment (e)n is described by a discrete infinite spectrum of 
relaxation times. 

With the aid of the dimensionless decrements ?.,(U) of the corresponding boundary 
problem [IO] the set of those relaxation times may be presented as 

q ( U )  = 2 ~ ~ d ? . 1 ( ~ )  (2) 

where the subscript I enumerates the eigenmodes of the orientational distribution function 
connected with the longitudinal (with respect to n) motions. The temperature-independent 
characteristic time to = & j2ay K determines the decay rate of the L m o r  precession of 
the magnetic moment in the uniaxial anisotropy field Ha = 2 K / I ,  of  the particle at low 
temperature. In the equivalent form it may be rewrinen as = (am$’, where oo = yHa 
is the Larmor frequency (y  being the gyromagnetic ratio) and a is the dimensionless 
phenomenological parameter [ 111 describing precession damping in the framework of the 
Landau-Lifshitz equation. 

The exact spectrum (?.!(U)] can be evaluated only by an elaborate numerical procedure 
involting a large number of eigenmodes [IO], but the asymptotic expressions are simple 
[9,10]: 

(3) 
for 1 = 1 
for I = 2, 3, . . .. 

u3/2 -0 e 
20 

?.[(U < 1) = l ( 1 +  1) +O(U) AI(U >> 1) cx [ 
Formulae (3) are sufficient to reveal the qualitative difference between hl and all the other 
decrements. Obeying the common expression I ,  = l(I + 1) at U + 0, in the opposite limit 
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Figure 1. The first eigenvalue as a function of the dimensionless temperature parameter 
l/u = k s T / K V .  Curve 1-numerical evaluation, 2-by interpolation formula (IS) after [12],, 
?-by interpolation formula (16) afrer [13]. 

hl is exclusive-it exponentially goes down whereas all the others display linear growth. 
The exact behaviour of bl (U)  at intermediate U is shown in figure 1 by a solid line. Two 
dashed lines there resemble the approximate expressions for XI recently proposed by Bessais 
eta1 1121 and Aharoni 1131. 

The relaxation time associated with A1 is singled out as well. According to equation (2), 
it becomes exponentially large 

TI - TO ea 

at high U thus signalling of slowing down (blocking) of the particle magnetic moment 
transitions between n and -n at low temperatures. However, to know to what extent q 
really affects the motion of the particle magnetic moment, we have to evaluate the weight 
coefficients with which different modes of W ( e ,  t )  enter the exact expression for (e(t))h.  

The corresponding calculation, which is highlighted in the appendix, shows that for 
the longitudinal projection of (e) the contribution of the lowest, i.e., with 1 = 1, mode is 
absolutely dominating. This result, not at all obvious until having been proven, justifies 
the effective closure of the infinite set of equations for the moments (e i  ), ( eiek ), . . . 
of the distribution function W (see equation (AZ) of the appendix) and leads to a single 
self-sufficient equation for the projection of (e) on n: 

where m = p(e)n and the temperature-dependent coefficient B = d In Z/du is defined via 
the integral Z(u)-see formula (A4) of the appendix. The numerical value of B grows 
from $~+O(O) at U << 1 (low potential barrier) up t o~ l  -O(U-’) at U >> 1 (high potential 
barrier). We remark that the equation obtained is already linearized with~respect to the 
applied external field H. The details of derivation of the right-hand side of equation (4.) 
may be found in [IO]. 

3. Spectral density function 

For the cases where only the longitudinal component of the magnetic moment is relevant, 
equation (4) provides a very simple and accurate reduction of the complete rotary diffusion 
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equation. In principle, a similar approximating procedure may be carried out to obtain 
a simplified representation for the time-correlation function p 2 ( e i ( f )  e&’) )ni nk of the 
longitudinal projection. The pertinent initial condition for this function readily follows 
from the equilibrium disuibution exp(-U/ksT) at H = 0. In the notations of equation (4) 
it reads 

Y L Raikher and V I  Stepmov 

(mZ( t ) )  = pzB. (5) 

However, those cumbersome calculations may be circumvented using the method of the 
Langevin equation (see [14]) introducing into equation (4) an effective white noise. This 
mcdification gives 

where for the auxiliary random magnetic field with allowance for equation (5) one obtains 

(F( t )F( t ’ ) )  = 2DS(t - t’) 2 0  2 ~ 1 k i T ~ / p ~ i ” B .  (7) 

Now applying to the system the oscillating magnetic field of frequency ‘2, i.e., setting in 
equation (6) 

1 (8) H ( ~ )  = .$ [ p r + @  + ,-W+r) 

where (p is an arbitrary initial phase of the oscillation, and making the time-frequency 
Fourier transformation, we obtain 

With the use of the relation 

(x,x;,) =2a(x2) ,8 (0-w ’ )  

connecting the product of the Fourier transforms with the corresponding spectral density, 
taking into account that the noise-induced field F is random and performing the averaging 
over I, we transform equations (7), (9) into the expression 

rendering the spectral density of motion of the component of magnetic moment along the 
anisotropy axis. Inside the curly brackets on the right-hand side of equation (IO) the first 
term should be identified with the thermal noise. It describes the energy spectrum of 
spontaneous orientational transitions between the potential wells created by the magnetic 
anisotropy. The second term, which is formally singular, is proportional to the power of 
the applied field and thus yields the contribution of the induced signal. 
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Figure 2. Dimensionless SR curves, i.e., functions R(m) of equation (13s. Line I 4 e d  
on the numerical calculation of A,; line 2-from equation (14); line 3 (dashed)-with AI by 
equation (15); line 4-with A i  by equation (16). 

4. Stochastic resonance 

Let us consider the spectral density function e(@) (m2),  at the frequency of the external 
field, i.e., at o = Q. Replacing, as in 131, the symmetrized Fourier transforms by the 
one-sided ones, from equation (10) we obtain 

According to the conventional definition of the stochastic resonance [3,4], it appears 
when, splitting the spectral density into two qualitatively different parts, one, construccts the 
signal-to-noise ratio. For the function (1 1) the choice is obvious, and thus the signal-to-noise 
factor is 

S = R H ~ / ~ D = ~ H ~ ~ ~ B / ~ T ~ ~ ~ T ~  ~ . (12) 1 

here we have made use of formula (7). 
To study the temperature dependence of the SR characteristic S, it is'convenient to 

r e h t e  the latter once more, grouping the temperature-sensitive functions. With formulae 
(2) and p = IsV we arrive at the representation 

2 
I( S=- (F) R R(u)  uB(u)hl(u) 

8 70 
(13) 

which shows that the subject of our principal interest is the dimensionless function R of 
the dimensionless argument U = K V / k s T .  The presence of  SR follows immediately from 
its asymptotics. Using equations (3) and the limiting expressions for B(u) one finds 

for U + 0 

for U + 00 

2 

,,5/2 -v 
R(u) = [ 

e 

which indicates that R assumes its maximum at finite U. The qualitative explanation is 
apparent: at very high temperatures (U -+ 0) the thermal noise takes Dver any regular 
motion, whereas at very low temperatures (U -+ CO) the potential wells tightly trap the 
magnetic moments. 



4142 Y L Raikher and V I  Stepanov 

The actual form of the SR curve obtained with the aid of formula (13) is shown in 
figure 2; the location of the maximum is U 2.5. For comparison we have also plotted 
there the SR curve of 161. (Though the contents of the [6,7] coincide almost exactly, their 
resulting SR functions differ. It seem that the latter paper' contain some misprints. For 
example, the expression for the transition rates there is obviously wrong.) Rewritten in the 
notations adopted here, the characteristic function R of [6] reads 

and predicts the maximum at a = 2% Note that while deriving equation (13) we have 
used neither the adiabaticity assumption or0 << 1 nor the high-barrier approximation 
a >> 1. Both these conditions were essentially used in [6,7] while deriving to formula 
(14). However, the comparison shows that disagreement between the exact and approximate 
results is not too dramatic, since the locations of the maxima differ by not more than 20%. 
Two other curves (3 and 4)  in figure 2 display the results of using, instead of the exact 
numerical values of Al(u). the interpolation expressions, namely, 

A, (a) = 2( I + a/4)'/* exp(-o) (15) 

proposed in [12], and 

proposed in 1131. As in figure 1, approximation (15) provides much better results than the 
other one. 

As to the observation and measurement of the SR curve, the direct way to them is pointed 
out by expressions (lOH11). The signal-to-noise ratio may be obtained either directly by 
evaluating Q(w)  from the autocorrelation function (m(t) m(0)) or calculated from the data 
on complex susceptibility [IS]. 

In [6,7] another method to obtain the SR data has been proposed. It is claimed that if, 
besides H(r),  one imposes on the system one more additional alternating field (in [6,7] it 
is called the 'probing field') 

- c f .  equation (S)-also weak and parallel to the anisotropy axis, and measure the imaginary 
part of the corresponding susceptibility x(wp, Q) = am/aHI, then the imaginary part of 
the dynamic response ~(o, ,  Q) to the field HI is proportional to the complete spectral 
density of the system subjected to the magnetic field H ( t ) .  It therefore contains all the 
sufficient information to obtain the SR curve. From the viewpoint of the author of [6,7], 
the proportionality ~(o,, Q) c( Q(op) at X f 0 follows from the fluctuation-dissipation 
theorem (FDT). 

However, this is not so. To understand this, one has just to recall that FDT holds 
only for the noise component of the spectral density function. That means that Sx(wp, Q) 
obtained by the method solicited in [6,7] will yield merely the part of Q(op), proportional 
to temperature, i.e., noise, as if the field X ( t )  had not existed at all. In other words, 
involvement of one more oscillating field is unable to provide any additional information. 
In the correct approach, the solution of the problem is simple. For evaluation of the SR 
curve, it is sufficient to have the data on the usual dynamic susceptibility with respect to a 
single probing field, no matter whether H or HI. As is shown in [15], the signal-to-noise 
ratio may be exactly expressed in terms of real and imaginary parts of this function. 
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5. Conclusion 

We have shown that for a physically important case of uniaxially anisotropic superpara- 
magnetic particqes convenient for observation the motion of the longitudinal projection of 
the magnetic moment may be rather accurately described with a single closed equation of 
relaxational type. The characteristic time entering this equation is defined for the whole 
temperature range, at low temperatures being very close to the conventional one [9] deter- 
mining the su$rparamagnetic relaxation in the cos' I9 orientational double-well potential 
at considerable heights of the barrier. 

With the equation obtained the procedure of evaluating the temperature behaviour of 
the signal,to-noise ratio in an assembly of single-domain particles becomes straightforward 
and does not need any additional approximations (adiabaticity, high barrier). The explicit 
dependences ofi the SR curve on the essential material parameters are readily obtained. 
Further simplification is available with the use of an interpolation formula for the 
eigenvalue AI  (U). 

In a non-eqliilibrium situation the fluctuation-dissipation theorem fails, and the direct 
connection between the spectral density and susceptibility is severed. Due to this no 
susceptibility mkasurements on the system already subjected to modulation can yield the 
data necessary to observe SR directly. 

- 

I 

Appendix I 
To prove the dominating role of the relaxation time in the longitudinal motion of the 
particle magnetic moment, we  shall^ use the effective relaxation time method. An extensive 
discussion of this and related problems may be found in [16]. 

The rotary siffusion (Fokker-Planck) equation for the distribution function W ( e ,  2 )  of 
the unit vector af the particle magnetic moment may be written [9, IO] as 

(AI) 

where Tis the aperator of infinitesimal rotations with respect to the components of e, and 
the energy funcfion U is defined by equation (1). For the longitudinal component of the 
magnetic momeht (e), equation (Al) is equivalent to the infinite set of equations for the 
macroscopic variables 

~ & q  awlat = TW T ( . Y / ~ ~ T  + In W) 

L 
I 

1 1 + 2  
(') - (21 + 1)(21+ 3) + 

(21 - l)(U + 3) 

where : = pH// ieT and (e) is the lth Legendre polynomial of cos0 = en averaged with 
the non-equilibrium distribution function given by equation (Al). The exact solution of the 
set (AZ) may beipresented in the form 

m 
I 

(kr) = arkexp(-Axt/2Zog) 
k=o 

where the ark /are the weight coefficients corresponding to the eigenvalues Ak of 
equation (Al). I 
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Now we suppose that a small steady magnetic field, formerly applied to the system, has 
been switched off at the moment f = 0. Under these circumstances the distribution function 
W begins to change approaching its equilibrium value at H = 0, i.e., 

W, = exp(u C O S ~ ~ P ) / ~ ~ Z ( U )  (-43) 

where 

Z(u) = exp(uy2) dy (A4) 1 0 

is the configurational partition function of a magnetic moment in the uniaxiaI anisotropy 
field. 

The effective time of the longitudinal relaxation of the particle magnetic moment, taking 
into account the contributions of all the timedependent modes, is conventionally defined as 

In view of definition (AS), it is convenient to rewrite the set (A2) integrating it over 
time. Setting there C = 0 (relaxation to the field-free state), one obtains 

1+2  FI+2] 
1 - 1  1 

(U - 1x21 + 3) FI - (U 4- 1)(21+ 3) FI--2 + 
L Z l  - 1x21 + 1) 

-2u 

Here we have introduced a notation 
m 

f i =  j ( 4 ) d r .  
0 

The right-hand side (the ‘initial condition’) of equation (A6) for small 5 may be written 

= t ( 9 P d o  (AS) 
where the subscript 0 denotes the averaging over the equilibrium distribution (A3). With 
the same accuracy, equation (A7) may be presented in the form 

FI=tfi (A91 

The set (A6) is easily solved numerically by the continuous fraction method [17]. The 

(AW 

as 

where now all fi do not depend upon 6 .  

effective relaxation time (A5) is then expressed (see equations (AS) and (A9)) as 

7 d O )  = W(PI)l,=, = f i / (P I70 .  

Note that with allowance for relation (A4) the quantity (P:)o coincides with the parameter 
B entering equation (4). 

The numerical results of evaluation of &(U) by the described procedure are shown in 
table A1 in comparison with tl(u). The high accuracy of their closeness is apparent, and 
this justifies the use of 51 in equation (4). 
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Table Al.  Comparison of the effective and singlemode values of the longitudinal relaxation 
time. 

d r&laa 2P.l 

10-3 l.OM)40 1 .OM) 40 
10-2 1.00401 . ~ 1.00401 
10-1 1.041 05 1.041 07 

1 1.52798 1.53107 
5 14.588 8 14.7704 
IO 691.016 693.922 
25 5.32269~10~ 5.32523~10~ 
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